Design-for-Test (DFT) tools and methodologies enable automation of many aspects of the semiconductor testing process, ensuring that the chip comes through tape-out and manufacturing on time, according to product specifications and of good quality. DFT tools enable creation of efficient test patterns that detect most major manufacturing defects.

Very complex integrated circuits, known as System-on-a-Chip (SoCs), can be designed in a modular form. Testability circuitry can be inserted into these modules individually. The different modules can then be integrated to create a full chip. Many tasks related to checking and insertion of testability need to be accomplished at a higher level of design abstraction, e.g. register transfer level (RTL), to reduce the complexity one would face working at the gate-level with millions of gates. As part of this methodology, special care needs to be taken to insert DFT circuits into the Hardware Description Language (HDL) codes, right at the RTL stage. To avoid costly surprises before tape-out, all DFT circuits that could result in changes to the designs should be incorporated into the design of each module.

DFT-PRO Plus™ offers an integrated DFT solution covering gate-level scan synthesis and ATPG, memory Built-In Self-Test (BIST) synthesis and boundary-scan (BSD) synthesis. The corresponding tools generate RTL blocks that fit seamlessly into an existing synthesis flow. This gives the user the freedom to choose any commercially available logic and scan synthesis tools from vendors like Cadence, Incisentia, Magma, Mentor, or Synopsys and enables a one-pass RTL to GDSII synthesis flow. It also eases overall design flow planning.

Tools for checking DFT violations and integrating various DFT blocks and design RTL codes are also included in the package. The testability checker conducts an extensive DFT rules check at RTL. It offers automatic DFT repair at RTL by inserting repair logic. This alleviates the tedious manual coding at RTL to repair the DFT rule violations.

VirtualScan™, included in the package, is a tool suite for VirtualScan synthesis and ATPG, using SynTest’s patented VirtualScan™ technology. It helps companies that develop million-gate SoCs to speed their products through the test process, and get a 10x to 100x reduction in the cost of semiconductor testing. It generates XtremeCompact™ test vectors, which reduce the test data volumes and test cycle volumes. Thus, there is no need to upgrade to more expensive, next generation Automatic Test Equipment (ATE) or expand existing ATE scan pattern memory. It offers high fault coverage and a smooth migration into an existing scan ATPG flow.
With VirtualScan™, an extremely large number of short scan chains within the SoC can be virtually accessed from outside the chip with a limited number of pins assigned as scan pins. Inside the chip, SynTest’s new patented circuitry is used to broadcast each external scan-input chain to a user-selectable number of internal scan chains using a broadcaster and at the other end compact them into the original number of external scan chains, using a compactor. The number of internal scan chains for each external scan chain is called the "Split Ratio". It is user-selectable.

VirtualScan Synthesis

Based on the Split Ratio selected, the broadcaster and compactor circuits are generated as RTL blocks. The area impact of the broadcaster and compactor is predictable and extremely small.

These RTL blocks are then synthesized along with the design RTL codes and other DFT RTL blocks into a gate-level netlist. As the DFT blocks are at RTL, it eases the overall design floorplanning decisions carried out at the RTL stage.

VirtualScan™ also contains tools for scan synthesis at gate-level for users who prefer to use SynTest’s scan synthesis tools. This process is performed after the RTL codes have been synthesized into a gate-level netlist. It provides scan selection based on clock domains and the scan flip-flop count. It automatically repairs testability violations, when requested.

Subsequently, scan extraction, and scan stitching if required, is performed on the scan-inserted gate-level netlist and the scan data fed to the VirtualScan ATPG.

Benefits of VirtualScan™

- Reduces cost of semiconductor testing – 10x to 100x
- Extends life of existing ATE for large SoC designs
- Smaller test data volume and shorter test time
- Short test development time with no iterations
- High fault coverage
- Predictable and very low hardware overhead
- Smooth migration into existing scan ATPG flow

Memory BIST

Many of today’s chips demand more embedded memories than ever before, comprising of SRAM, ROM, EPROM, DRAM, etc. More than 30% of premium space and 50% of the transistors could be allocated to memory alone, and the memory blocks can be located at physically diverse locations in the circuit. This mandates that to ensure reduced failure rates and increased quality, the embedded memories be tested thoroughly. However, the simultaneous increase in the complexity, density, power, and speed of these memories, compounds the testing issue and calls for special economic test methods. BIST for memories is a solution that has rapidly become popular.

SynTest’s TurboBIST-Memory™

A memory BIST tool for embedded memories including SRAMs and ROMs, enables multiple BIST memory tests via a shared controller. It outputs a synthesizable RTL BIST controller and logic synthesis scripts. It also generates a Verilog testbench automatically. A diagnosis feature is available.

Boundary Scan

Boundary-scan circuitry uses only a limited number of external pins to provide physical access to all kinds of design and test modules. It can be used to access design and test modules such as IP cores, internal scan cores, and BIST cores for memory, logic or analog circuitry, within an integrated chip. Boundary scan can also be used to verify proper assembly on printed circuit boards or help configure a system.

SynTest’s TurboBSD™

A tool for boundary-scan synthesis, performs IEEE 1149.1 compliant boundary-scan logic synthesis, generates boundary-scan description language (BSDL) files and creates boundary-scan test patterns, including verification and parametric testbenches. Verilog RTL codes are also generated.
DFT Integration and Stitching

SynTest’s TurboDFT™, a tool for DFT integration and stitching, eliminates the tedious, error-prone manual stitching process by automatically integrating and stitching any combination of DFT cores, such as scan cores, memory BIST cores, logic BIST cores, analog BIST cores, IP cores, IEEE1500 cores and the boundary-scan (JTAG) core. It also facilitates stitching DFT cores into very deep hierarchical designs.

It automatically stitches together DFT-ready blocks created by following SynTest DFT tools:

- Scan (VirtualScan™)
- Boundary Scan (TurboBSD™)
- Memory BIST (TurboBIST-Memory™)
- Logic BIST (TurboBIST-Logic™)

DFT-PROPlus™ in an ASIC/SoC Design Flow

It also generates top-level testbenches for memory BIST and logic BIST cores with or without boundary-scan control.

Checking for Testability

SynTest’s TurboCheck™, a testability checker, provides fast feedback about potential testability and some design related problems during the design phase of the circuit, allowing changes to be made early in the design process, thereby avoiding costly iterations. To support checking through the design cycle, TurboCheck comprises of TurboCheck-RTL™ for checking digital designs at RTL and TurboCheck-Gate™ for checking at the gate-level.

TurboCheck™-RTL: It identifies testability problems at the earliest stage of the design cycle, right after RTL coding. By checking the RTL codes, the designers can check for testability rule violations even before the often time-consuming logic synthesis process. The pre-logic synthesis identification of RTL design errors averts post-synthesis surprises, which result in costly and time-consuming redesign. Most testability problems can be detected at RTL coding before synthesis.

If users so desire, many DFT violations can be automatically rectified at the RTL stage in a prototype feature. This is done with minimal code insertion and minimal impact on the timing. The most common violations are generated clocks, gated set/reset, and combinational feedback loops. This facilitates reusability of the clean RTL codes.

TurboCheck™-Gate: It is used to check the gate-level design database after the design is synthesized into gates. Since the RTL design has been checked by TurboCheck-RTL before synthesis, TurboCheck-Gate can perform a structural-level check on the final design to further identify and zero-in on the final testability violations that cannot be otherwise detected at the RTL stage.
Automatic Test Pattern Generation (ATPG)
The ATPG automatically generates high quality manufacturing test patterns, resulting in a test program used by a specific ATE to test an IC device. The VirtualScan™ ATPG tool uses patented VirtualScan ATPG technology to generate high quality test patterns, which enables very high fault coverage to be achieved.

The ATPG test patterns are XteremeCompact™ (extremely compacted) for reducing test times, and are especially advantageous for multi-frequency, multi-clock designs. The ATPG test patterns are available in various formats for post processing.

Scan Test for a Multiple-Capture-per-Cycle Scheme
SynTest’s patented multiple-capture-per-cycle scheme for ATPG slashes the total test time of multi-frequency, multi-clock domain designs, as all clock domains are captured in each capture cycle.

Fault Coverage
VirtualScan™ allows the user to configure its architecture to meet fault coverage requirements. To ensure no loss in fault coverage, the user can initially run the ATPG using VirtualScan and subsequently run it as serial scan. Even in this case, significant reductions are available in the test data volume and the test cycle volume.

PLATFORMS
DFT-PRO Plus™ package runs on Sun Solaris, and networked Linux operating PCs.

OTHER PRODUCTS FROM SYNTES T
TurboBIST-Logic™
- Helps reduce ATE tester costs during production, by using at-speed testing. Ideal when dealing with SoC designs with multi-million gates, multiple clock domains and multiple frequencies including high frequencies.
- Helps improve quality of deep sub-micron chips, by detecting delay faults by using at-speed testing and a patent pending capture scheme.
- Offers comprehensive fault detection when testing circuits with multiple clocks and multiple frequencies using SynTest’s patent pending capture scheme for true multi-frequency, multi-clock handling.
- Helps reduce design time and test costs as well as ensures higher quality and reliability when using multiple instantiation of "legacy" logic circuit blocks or re-using IP cores in different designs.
- Can help in the wafer sorting process and thereby help reduce packaging costs.
- Ideal for in-field remote testing or non-invasive testing of crucial electronic equipment.
- Helps during prototype debug / diagnosis.

TurboFault™
It is the fastest high capacity concurrent fault simulator based on the latest advances in cycle-based simulation technology. With its low memory consumption, user-definable fault detection criteria, fault-tracing, back-tracing and crash recovery capabilities, it combines high performance with versatility and accuracy.

It accepts fault lists from most ATPG tools. As input stimuli, it can handle VCD, WGL and SpringSoft FSDB. It can take full timing designs with SDF and supports synchronous and asynchronous designs at gate level. A behavioral-level concurrent fault simulation is slashed for release in 2012.

Corporate Headquarters:
SynTest Technologies, Inc. Telephone: +1.408.720.9956
505 S. Pastoria Ave., Suite 101
Sunnyvale, CA 94086, USA
Facsimile: +1.408.720.9960
E-Mail: info@syntest.com

Offices and Distributors Worldwide - Please call, e-mail or visit our web site for the one closest to you.
http://www.syntest.com

©2011 SynTest Technologies, Inc. All rights reserved. All trademarks are property of their registered owners.